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Abstract

Traditionally, cryptography and its applications are
defensive in nature, and provide privacy, authentica-
tion, and security to users. In this paper we present the
idea of Cryptovirology which employs a twist on cryp-
tography, showing that it can also be used o�ensively.
By being o�ensive we mean that it can be used to
mount extortion based attacks that cause loss of access
to information, loss of con�dentiality, and information
leakage, tasks which cryptography typically prevents.
In this paper we analyze potential threats and attacks
that rogue use of cryptography can cause when com-
bined with rogue software (viruses, Trojan horses), and
demonstrate them experimentally by presenting an im-
plementation of a cryptovirus that we have tested (we
took careful precautions in the process to insure that
the virus remained contained). Public-key cryptogra-
phy is essential to the attacks that we demonstrate
(which we call \cryptovirological attacks"). We also
suggest countermeasures and mechanisms to cope with
and prevent such attacks. These attacks have impli-
cations on how the use of cryptographic tools should
be managed and audited in general purpose computing
environments, and imply that access to cryptographic
tools should be well controlled. The experimental virus
demonstrates how cryptographic packages can be con-
densed into a small space, which may have indepen-
dent applications (e.g., cryptographic module design
in small mobile devices).

1 Introduction

Every major technological development carries with it
a certain degree of power. This power is often bene-
�cial to society, but more often than not it can also
be severely misused. A perfect example of such a
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technology is atomic �ssion. Cryptography is a bless-
ing to information processing and communications (as
atomic �ssion is to energy production), because it al-
lows people to store information securely and to con-
duct private communications over large distances. It
is therefore natural to ask, \What are the potential
harmful uses of Cryptography?" We believe that it is
better to investigate this aspect rather than to wait
for such attacks to occur. In this paper we attempt
a �rst step in this direction by presenting a set of
cryptography-exploiting computer security attacks and
potential countermeasures.

The set of attacks that we present involve the
unique use of strong (public key and symmetric) cryp-
tographic techniques in conjunction with computer
virus and Trojan horse technology. They demon-
strate how cryptography (namely, di�erence in com-
putational capability) can allow an adversarial virus
writer to gain explicit access control over the data
that his or her virus has access to (assuming the in-
fected machines have only polynomial-time computa-
tional power), whereas from an information theoretic
point of view (assuming all parties are all-powerful)
this is impossible. This idea is then extended to allow
a distributed virus to gain itself explicit access control
over the information on infected machines, provided it
is not detected early enough and vigorously destroyed.
This shows that viruses can be used as tools for extor-
tion, potential criminal activity, and as munitions in
the context of information warfare, rather than their
traditional reputation of being merely a source for dis-
turbance and annoyance. In general, we de�ne cryp-
tovirology to be the study of the applications of cryp-
tography to computer viruses. We note that cryptogra-
phy has been used to help prevent viral attacks (i.e., by
providing strong integrity checks) and to try to hide a
virus's structure, yet formal cryptographic paradigms
have never before been used successfully as a weapon
in viral attacks.

In describing the �rst set of attacks, a new virus
model is proposed. The model is motivated by biolog-
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ical organisms that are capable of modifying the host
to depend on the organisms themselves. Such a virus
forces a symbiotic relationship between itself and its
host. Alternatively, this dependency may also be de-
rived from an e�ect that the virus has on the host,
such that only the author of the virus can reverse the
e�ect. As we shall point out, this later situation is a
mere approximation to the former.
Preventive measures are described in response to

the attacks. They are a step in the right direction
to help prevent and recover from such attacks. In fact,
it is shown that the public availability of cryptographic
tools without proper access control, can put the data
on a computer system at serious risk.

1.1 Organization

Background information on viruses is given in section
2; the notion of a computer virus is de�ned and a set of
general rules that pertain to computer viruses is given.
We develop cryptovirology from the perspective of sur-
vivability. Section 3 introduces a de�nition of what we
believe to be a computer virus with the property of
high survivability (i.e., one that forces the host to re-
tain the virus), and its inherent characteristics. Exam-
ples of attempts to make the high survivability virus
are also discussed.
Section 4 describes a set of cryptovirological attacks

which attempt to approximate the high survivability
virus (i.e. not being survivable, but having an e�ect
which is survivable unless the virus writer interferes).
Rather than having the absolute survivability prop-
erty, the attacks create absolute dependency on the
virus writer. Section 5 presents a virus that attempts
to manage its own keys in a distributed fashion based
on secret sharing techniques, so there is a dependency
of the local user on the (distributed) virus itself. In
section 6 we suggest measures that can be taken to
reduce the threat posed by cryptovirological attacks
and to minimize abuse of cryptographic facilities. The
Appendix contains a description of our experimental
cryptovirus as well as the virus performance on a Mac-
intosh computer (but no code is described!)

2 Background

The notion of a Trojan horse was �rst discovered by
D. Edwards and was described in the Anderson report
[And72]. It is a program that resides in another pro-
gram that does something that the user is unaware of.
A Trojan horse may, for instance, reside in a compiler
and transmit source code to the author of the Trojan.
One of the early Trojans was a binary code segment
that was inserted into Multics binary code that was

distributed to all sites [KS74], thus demonstrating the
feasibility of and di�culty of �nding a Trojan horse.
To guard against such attacks it is necessary to con�ne
programs into small domains with only the rights that
are needed for their functioning and to guard their in-
tegrity (either in binary or source code modes). Lamp-
son showed that as long as a borrowed program does
not have to retain information, con�nement can be
achieved by restricting access rights to the program.
However, most of the time covert channels are avail-
able for leaking information [Lam73].

Computer viruses are similar to Trojan horses since
they remain hidden from the user. Some viruses are
benign and merely consume CPU cycles, while others
overtly delete and overwrite data. We will not present
a rigorous de�nition of a computer virus here. Instead,
we will adopt the following de�nition put forth by Fred
Cohen. A computer virus is de�ned as a program that
can infect other programs by modifying them to in-
clude a, possibly evolved, copy of itself [Coh89].

The �elds of virus and antivirus technology are
broad in scope and are slowly changing over time. Per-
haps the latest development in the �eld of virus tech-
nology is the advent of Polymorphism. A virus that
is polymorphic creates o�spring with object code that
is di�erent from that of the parent. The original com-
puter viruses were monomorphic in nature. That is,
their object code remained essentially the same across
viral generations. Polymorphic technology was devel-
oped in response to viral scanners which use databases
of search strings to identify known viral strains.

Viral polymorphism, among other things, involves
the encipherment of the main body of the virus to make
it di�cult to detect. Typically, the XOR operation
is used with a randomly chosen value to accomplish
this. The resulting ciphertext is in no way secure from
simple cryptanalysis, but makes the task of identifying
the main body of the virus using �xed-string scanners
more di�cult. We do not include weak methods of
\virus self-encryption" as part of cryptovirology.

There are several rules that all viruses seem to obey.
(1) By virtue of being programs they all consume CPU
time and occupy space. Also, (2) since viruses need to
gain control of the program counter in order to execute,
they must (directly or indirectly) modify code in the
host system in order to do so. The last and perhaps
most interesting rule of viruses is (3) their inherent
vulnerability to user scrutiny. Viruses can always be
frozen and analyzed by the user. They can be backed
up (or a backed up copy can be found) and later scru-
tinized in detail using a low level debugger. In what
follows we show that this vulnerability can be e�ec-
tively bypassed if strong cryptographic techniques are
employed and if the virus acts fast enough, i.e. before
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detection.

3 High Survivability Virus

We are interested in making the host dependent on the
virus. Thus, we design cryptovirology from the point of
view of survivability. That is, a virus can survive in the
host if it makes the host depend in a critical way on the
very presence of the virus itself. If we cannot achieve
this, we may approximate it by writing a virus such
that its e�ect on the host is only reversible by the virus
writer (so the dependence is approximated by making
the host depend on the author rather than the virus).
In section 3.1 we de�ne a highly survivable computer
virus (or h-s virus), and conclude with a few examples
of past attempts to implement it. We also discuss the
possibility of its existence. We then describe an ap-
proximation to high survivability, namely, having an
e�ect that is survivable and thereby leaving the host
at the mercy of the virus writer. We analyze the possi-
bility of the survivable e�ect (or damage) with respect
to Information Theory and Computational Complex-
ity. Note again that we are interested in an e�ect that
gives an advantage to the virus writer rather than hav-
ing an e�ect where no one can help (like viruses that
simply erase �les for annoyance).

3.1 Survivable Virus

Virus writers try very hard to make their viruses di�-
cult to detect, since they know that users will try to re-
move them once they are found. Polymorphic, Stealth,
Mutation, and Tunnelling technologies are a virus's
best means for evading detection in systems that run
antiviral software. The high survivability property of
a computer virus that we propose is one that forces a
non-bene�cial symbiotic relationship between a virus
and its host so that the survival of the virus is essential
to the survival of the host1.
Survivability is an issue common to viruses, Trojan

horses, worms and other forms of \malware." We will
use \virus" in the discussion below to represent all of
these. The following is our de�nition of a computer
virus with the \high survivability property".

De�nition 1 A computer virus has the \high surviv-

ability" property if it can maintain control over a crit-

ical host resource Rc such that it grants access to Rc

solely when it is needed, and such that if the virus is

modi�ed or removed, Rc is rendered permanently inac-

cessible.

1This is analogous to H. R. Giger's �ctional \facehugger" that

appeared in themovie \Alien" [BS79]; the unfamiliar reader who
is interested in the gory details may see the movie.

Note that this de�nition implies that the virus has
modi�ed the machine's state to such a point that if
you rid the machine of the virus you lose access to the
resource. This is a de�nition which is optimal from
the virus writer's point of view. We stress that it is
not necessarily achievable{ but if a virus can achieve
such control, and if the resource it holds \hostage" is
crucial, then the virus will survive in the host.

Four notable rogue programs have appeared in the
wild that seem to reect the intention of remaining res-
ident after detection. These programs are the One-Half
virus, the LZR virus, the AIDS Information Trojan,
and the KOH virus.

The One-Half virus operates by encrypting the hard
drive starting from the last cylinder and slowly moving
forward over time. The One-Half virus uses a symmet-
ric cipher, and stores the secret key within itself. To
rid the host of the e�ect of the virus, the key can be
obtained from the virus code, and the damage undone.

The LZR virus is even closer to a h-s computer virus.
LZR takes control of reads and writes to the hard disk
using a relatively unknown system call [DB95]. LZR
writes error correction information to the disk, even
though error correction is not usually performed by
the operating system. As information is written to
the disk, the data is followed by the error correction
data of the viruses' choosing. If the virus is removed,
the viral routine will not be called, and the �les will
be rendered incomprehensible to user programs. The
damage caused by LZR can be undone by copying all of
the damaged �les to oppy disks and then disinfecting
the virus with an appropriate antiviral program. This
disinfection works because the error correction routine
is not invoked when writes are made to oppy disks.
Even if this error correction mechanism worked with
oppy disks, it would be possible to write an antiviral
program that would repair all the data over a period
of time.

Though not a virus, the AIDS Information Trojan
nonetheless exhibits traits similar to that of a h-s com-
puter virus. It provides information on the users risk
of contracting AIDS, and at the same time encrypts
the users hard drive after 90 reboots. The user is then
informed that a license fee must be paid in return for
the decryption key [Sla94]. This Trojan is one of the
�rst extortion attempts made using rogue programs.
Unfortunately, we do not know the exact cipher used
by the AIDS Information Trojan. It can be considered
a step in the direction of a h-s virus.

The KOH virus is a virus that is used to encrypt the
data on a host system. The motivation for the virus is
to allow encryption to be performed in the background,
so that user intervention is not required. This virus
incorporates the use of the IDEA cryptosystem and is
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sold commercially. It will be shown later that such a
virus containing a symmetric cryptosystem cannot be
used to mount extortion-based attacks.

3.2 Exploiting Intractability

An approximation to a h-s virus is a virus having a sur-
vivable (or lasting) e�ect. In other words, after detec-
tion the computer cannot rid itself of the e�ect of the
virus unless the virus writer helps. This opens avenues
for serious attacks by viruses. We next explore sur-
vivability and survivable e�ects using two frameworks:
Information Theory and Computational Complexity.

Claim 1 From an information theoretic perspective

everyone has the same ability to recover from the dam-

age caused by a virus (in particular, if the virus writer

can recover from the damage caused by a given virus,

then so can everyone else, and if no one else can re-

cover from the damage caused by a given virus then the

writer cannot recover as well).

Proof Let S denote a machine (or system) and let V
denote a virus capable of infecting S. We assume that
V's program is available (it is well understood) to the
victim as well as to the writer. This is so, since from
an information theoretic point of view, once the virus
program is available its e�ect can be fully understood
(as was demonstrated in [ER88]).
Assume that S is initially uninfected. V is either

obtrusive or non-obtrusive. Consider the case in which
V is non-obtrusive, meaning that it does not interfere
with the current state or the stored states of S. In this
case, given S, we can always get the current (later)
state with or without the virus being present in this
computation. Since the virus is non-obtrusive it follows
that everyone can just remove the virus. Now consider
the case where V is obtrusive and modi�es the states of
S. For example, V may erase or XOR the current state
and all previous states stored on S. If a backup of a
previous program and state cannot be provided, then it
is impossible for anyone to undo the damage caused by
V to the data on S. Or more formally, the distribution
of the correct state given the damaged state is (equally)
available to everyone (the writer as well as the victim).
Note that if there is a backup of the state prior to
infection, we can restart the computation and we are
e�ectively in the non-obtrusive case again.
It therefore follows that from an information theo-

retic perspective, either everyone can recover from the
damage caused by V, or no one can recover from the
damage caused by V (not even the writer). 2

Claim 1 was proven based on Information Theory {
that is, if the victim is in�nitely powerful he can still

either recover, partially recover, or not recover at all.
The virus either does not change the state, changes S
in a way that it is easily recoverable, changes S such
that one can use a backup to recover, or changes S
such that there is a probability distribution of initial
states{ and in the worst case the initial state is not
determinable.
In all these cases, from Information Theoretic per-

spective, the virus writer cannot a�ect the outcome
in this matter. Now we consider the case in which the
computational resources of the victim are polynomially
bounded.

Claim 2 From the perspective of Computational Com-

plexity, there are cases where a virus can cause damage

such that the victim cannot recover, but the virus writer

can.

Proof We assume the case that no backups exist
(if there are backups then clearly the victim can re-
cover). The proof of this is by exploitation of the
assumed strength of public-key cryptography (which
was used before to break symmetries based on in�nite
computational power of parties assumed by Informa-
tion Theory2).
This is easy to achieve by supplying the virus with

a public key. The virus can encrypt data D on the
host machine S with this key. Evidently, from the
de�nition of a Public Key Cryptosystem and from the
fact that only the virus writer knows the private key
corresponding to the public key of the virus, the claim
holds. 2

Note that we have shown a way to bypass the last
rule of computer viruses that we presented earlier. The
virus contains trapdoor information such that this in-
formation does not reveal itself when the virus is scru-
tinized. Does this solve the problem of making a virus
with the high survivability property? We shall present
evidence that indicates that it does not.
Let F be a h-s virus, D be a critical data �le in

host system S that contains several (software and hard-
ware) components, and U be the user of S such that
F;D 2 S. Clearly, the user is external to the machine,
thus, U =2 S. Let R be a relation on the set of ele-
ments consisting of the user U , the virus F , and the
data D, where (x; y) 2 R i� x can encrypt and de-
crypt y. Our goal is to have (F;D) be contained in R

and at the same time have (U;D) not in R. We shall
see from the following three cases that either (F;D) is
not in R, or that (U;D) is in R by transitivity of the
encryption/decryption capability relation.

2In [SRA79] (see also [Sch96] pp. 93) it was shown that deal-
ing fair hands from a deck of cards by two parties is impossible

from an information theoretic point of view and possible based
on computational complexity via cryptographic assumptions.
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1. F contains a secret key and tries to monopolize
critical resource D. From the way F is con-
structed, it is clear that (F;D) is in R. Since
U can read and control the data on S, and
since F resides on S, the (U;F ) is in R. Since
f(U;F ); (F;D)g is in R, (U;D) is in R by tran-
sitivity. It follows that U can always decrypt D0

to get D. Since F cannot prevent U from having
access to D, F is not a h-s computer virus.

2. F contains a public key and no private key. F

can then encrypt D to get D0, but cannot decrypt
D0, therefore (F;D) is not in R. It follows that
F cannot monopolize critical resource D, and is
therefore not a h-s computer virus.

3. F contains a public key and its corresponding pri-
vate key. It follows that F can transform D into
D0 and vice-versa, thus (F;D) is in R. However,
since (U;F ) is in R, U has access to the public
and private keys in F . It is therefore the case
that (U;D) is in R by transitivity. Since F can-
not prevent U from having access to D, F cannot
be a h-s computer virus.

Intuitively, it makes sense that implementing the h-s
virus is a di�cult task. A h-s virus must not only be
immune to the scrutiny of all users, but must also be
able to control access to D. We leave the possibility
of the existence of h-s computer viruses as an open
problem.

Note, however, that in case 2 the virus writer accom-
plishes something unusual. If F manages to encrypt D
to get D0 and if U does not have a backup of D, then
only the virus writer will be able to transform D0 back
into D. This act breaks the symmetry between what
the user has access to and what the virus writer has
access to as claimed possible in Claim 2. A �rst order
approximation to the h-s computer virus is therefore
possible since the virus can do damage that the victim
cannot repair, but that is possible to �x. This means
that an adversarial virus writer can gain explicit access
control over user data by having a survivable e�ect.

Adleman has shown that detecting viruses is an in-
tractable problem, and that it seems unlikely that pro-
tection systems predicated on virus detection will be
successful [Adl90]. His approach towards computer
viruses was from the perspective of Computability,
whereas our approach is based on Computational Com-
plexity. We have shown that even if a virus is detected
in a given system, it may be a computationally in-
tractable problem to reverse its e�ect on the host sys-
tem (assuming public-key cryptography is strong).

4 Cryptovirological Attacks

In this section a series of cryptovirological attacks that
use the above observations are presented where the
possessor of the private key of the virus is the author.

4.1 Survivable and Reversible Crypto-

graphic Attack

We de�ne a cryptographic attack to be a denial of ser-
vice attack using a public key. The attack is survivable
unless the virus writer reverses it. A cryptographic at-
tack can be performed by a cryptovirus or a cryptotro-
jan, which are de�ned by the following.

De�nition 2 A cryptovirus (cryptotrojan) is a com-

puter virus (Trojan horse) that uses a public key gen-

erated by the author to encrypt data D that resides on

the host system, in such a way that D can only be re-

covered by the author of the virus (assuming no fresh

backup exists).

The setting for the denial of service attack is as
follows. Immediately following encryption, the cryp-
tovirus noti�es the user and demands that the user
contact the virus writer. Once contacted, the virus
writer demands a ransom in return for the private key.
Once the private key is obtained, the user is able to
decrypt D0 to get D (assuming no backups). A draw-
back from the perspective of the virus writer is that he
cannot free one victim without potentially freeing all
the victims, because the freed victim could publish the
private key. This drawback can be solved if the virus
contained multiple public keys. The virus could ran-
domly (or otherwise) choose a key for a given attack,
thereby allowing the virus writer to free some victims
without freeing all the rest. This gives the virus writer
more control over who he can selectively free. However
carrying many keys is expensive. Also, note that this
is only a partial solution, since users may cooperate
with each other. Another drawback is the fact that
encrypting a �le directly with a public key is slow.
To solve the above problems we will employ hybrid

cryptosystems, in which the session key is used to en-
crypt the critical data. If the cryptovirus generates a
large random session key and encrypts this key with
the public key for each machine that it attacks, then
with very high probability, each victim will need a dif-
ferent key to get their information back. In this case
the adversary never discloses his private key to the
users. Instead, he demands that they give him the
ciphertext of the session key (and whatever else is nec-
essary for decryption). For a suitable ransom, he will
decrypt the session key for them. Also the encryption
will be fast.
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The hybrid cryptographic attack is a reversible de-
nial of services attack. It is reversible since by com-
municating with the victims, the virus writer is able
to return the data that is denied. This contrasts with
the traditional notion of a denial of service attack in
which, for example, data is permanently deleted.

The following is a more detailed description of
the hybrid cryptographic attack. A cryptovirus is
equipped with a strong random number generator and
a strong seeding procedure and mounts an attack by
generating a random session key Ks and a random ini-
tialization vector IV . Let the public key in the virus
and private key of the writer be denoted by Kf and
Kw respectively, where f denotes the virus and w de-
notes the writer. The plaintext message m = fIV;Ksg

is formed by the virus, and is encrypted withKf to get
the ciphertext m0 = fIV;KsgKf . The virus then en-
crypts the critical system data using the Ks, IV , and a
symmetric algorithm. A suitable mode of operation of
the symmetric cipher is output feedback mode (OFB)
[Den82, Sch96]. After encryption the original �le is
overwritten.

The next part of the attack is aimed at getting the
user to contact the virus writer. The virus prints a
message to the screen containing m0 and the phone
number of the virus writer. If the victim has a back-
up of the data �le, then the victim need not contact the
virus writer. The victim may then try to disinfect the
system. If there is no back up, then the victim must
contact the virus writer to retrieve the original data.
Upon making the phone call, the virus writer asks for
m0 in addition to a suitable ransom. Once the ransom
is paid, the virus writer decrypts m0 using Kw. The
session key and IV are then given to the victim. Since
the victim never �nds out Kw , he is unable to assist
other victims of the cryptovirus with high probability.

Remark 1: Sending the information to the author
does not necessarily reveal the author. The informa-
tion may be asked to be posted publicly while being
encrypted using the public key of the attacker. A pub-
lic bulletin board can be used for such purposes. Unlike
physical resources, information resources do not need
to be shipped to the attacker, again due to the power
of cryptography.

Remark 2: Stealing attack: We can use a cryp-
tovirus to securely steal information from a remote lo-
cation and use the viral spread as the communication
medium. Rather than announcing its presence after
data D is encrypted, a cryptovirus can simply append
D0 to itself (perhaps without a�ecting the local copy).
The virus then replicates as usual but kills any ances-
tors or siblings that it encounters that do not already
contain D0. If the author is lucky he will encounter an
o�spring with D0 and decrypt it. The virus is a secure

communication medium since no one else, except the
writer, has the ability to decrypt D0.
We end this section with a description of a general

purpose cryptotrojan that is capable of compromising
system security while minimizing the authors risk of
getting caught. Packet sni�ng and keystroke monitor-
ing Trojan horses are a well known method of stealing
passwords. Such Trojan horses typically store the pil-
fered passwords in a hidden �le. The drawback to these
Trojan horses is that the passwords that are hidden are
at risk of being found by system administrators. In
addition, the attacker must either make the passwords
publicly accessible or must later log in to download the
passwords. A cryptotrojan using the author's public
key solves both of these problems and provides safe
storage for the stolen information.

4.2 Information Extortion Attack

The information extortion attack is an attack in which
the virus writer is able to force the victim to exchange
information in return for the session key and IV , and
in addition provides a mechanism for verifying the au-

thenticity of the data being extorted. This attack can
only be carried out successfully if the virus succeeds
in encrypting critical information that cannot be re-
placed by the victim. Systems that manipulate up-to-
the minute valuable information are highly susceptible
to such an attack. This attack uses the hybrid crypto-
graphic attack, with a few modi�cations. This attack
can extort resources, but can also be used as a tool for
espionage and information warfare.
The information extortion attack permits a virus

writer W to demand a �le of arbitrary size by includ-
ing a checksum of that �le in the message block m. In
this attack, W demands the desired �le in addition to
the ciphertext of the message block m. The following
is the data structure for the message block:

m = fChkSm; IV;Ksg

m0 = fChkSm; IV;KsgKf

Kf = public key of W in virus F

Kw = private key of W

ChkSm = checksum of file desired by W

IV = random initialization vector

Ks = random session key

The only value above that is not strictly random is
ChkSm, which is a function of the session key, IV , and
the �le that the virus writer desires. The attack works
as follows. F is written by W and is programmed to
look for critical data D and desired data H. Upon mi-
grating to the correct host system S, the virus mounts
a hybrid cryptographic attack in the following way. It
�rst generates IV and Ks, randomly using its built in
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random number generator. It then uses a symmetric
cipher to encrypt D, and overwrites the original �le. F
then looks for data H. If it is found, a cryptographic
checksum of it is performed to get ChkSm. This is
accomplished by usingH, IV , Ks, and a symmetric ci-
pher (say, in CFB mode [Den82, Sch96]). The message
m is then formed by F and encrypted with Kf to get
m0. After m is overwritten in RAM, the virus displays
m0 to the user and instructs the user to contact the
virus writer and upload m0 along with H. This com-
pletes the information extortion attack by the virus.

Provided the user follows the prescribed protocol,
he sends W the ciphertext m0 and data H. The virus
writer then decrypts m0 with Kw and extracts IV , Ks,
and ChkSm. W then performs a checksum on H us-
ing IV and Ks and compares the result to ChkSm.
If the checksum matches, W assumes H is authentic
and sends fKs; IV g to the user. Otherwise, W as-
sumes that the user altered H and does not send him
fKs; IV g.

Suppose that the user wants to cheat W . If the
user doesn't want Ks then he can send W an H of his
choosing and its corresponding m0. He can do this by
simply choosing H and performing the attack himself.
It follows that the attack will only be successful if D is
a critical resource that is not backed up. Now suppose
that the user wants fKs; IV g but doesn't want to give
the virus writer H. He could do this by modifying H
and either sending himm0 or an altered m0. If he sends
m0 along with an altered H, the virus writer will de-
tect this when he computes the checksum of H. Now
consider the case where the user sends a modi�ed H

and modi�ed m0. In this case, since the user does not
know Kw he does not know how to alter m0 correctly
and with very high probability will be caught when
W computes the checksum of H. Even if the check-
sum succeeds, chances are he will receive the wrong
Ks. Any forgery by the user must be done without
knowledge of the session key, IV , or checksum value.
The assumption being made here is that the session
key and IV are not captured by the user during the
short period of time in which they are in RAM.

The information extortion attack could translate di-
rectly into the loss of U.S. dollars if electronic money
is implemented. In fact, the potential for attacks on
anonymous e-money has been recognized in the crypto-
graphic literature [vSN92, BGK95, SPC95, JY96]; we
materialize an attack via a cryptovirus. A specialized
cryptovirus could be designed to search for e-money
notes and encrypt them. In this way, the virus writer
can e�ectively hold all the money ransom until half of
it is given to him. Even if the e-money was previously
encrypted by the user, it is of no use to the user if
it gets encrypted by a cryptovirus. Electronic money

must therefore be treated with great care, since it is
subject to ransom on any machine that is subject to
viral attack.

Appendix A contains a description of our experimen-
tal cryptovirus. The virus is a Macintosh virus which
performs the information extortion attack on a spe-
ci�c date. The virus is under 7k bytes in length and
requires a total of 12 seconds to complete its attack. It
contains code for RSA, the Tiny Encryption Algorithm
[WN94], and truerand [MB95].

The cryptographic engine of the virus represents a
bene�cial application of our work: the demonstration
of a space e�cient cryptographic module (applicable
to small devices like mobile units).

5 The Secret Sharing Virus

In this section we show how to implement a virus that
is a very close approximation to a h-s virus. Whereas in
the above attacks the virus author managed the keys
and owned the private key, here the virus itself will
manage its private key. This sounds paradoxical, since
a virus holding a public key and managing its private
key can be analyzed and could lose its power. How-
ever, this is accomplished by changing our notion of
a system S to be a network of computers, and to re-
gard the host as being the entire network. We use the
distributed environment to hide the key in the virus
copies themselves.

Let us describe this in some detail. We have shown
how Public Key Cryptography can be used in a virus to
encrypt information such that the user cannot retrieve
it. In order to be able to decrypt D0 to get D, the
private key must also be stored somewhere, since oth-
erwise D0 cannot be decrypted. We cannot store the
entire private key at one node in the network, since
this would give the user of that node the entire private
key. By considering an entire network as a host we
e�ectively divide and conquer the power of the user,
since we now have many di�erent users who do not
have access to each others data. The secret sharing
virus takes advantage of this property by sharing its
private key among m nodes, where m > 1. The virus
therefore exploits the access controls that users place
on themselves to keep its private key secret.

The idea is that a virus will spread itself around the
network, and may act autonomously or wait for out-
side control to act as an agent of the writer. Note that
the local users my wipe out parts of the virus (assum-
ing they have back-ups), but then the total network
may be damaged (since we need the entire virus pieces
to recover). It may therefore be useful for the virus to
immediately notify the local machines that if they rid
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themselves of the virus they may cause global prob-
lems and ask them to �rst consult with the network's
administrator. Alternatively, if we are afraid of mak-
ing the virus's attack irreversible, we can reserve the
option for the writer to know the keys that the virus
generates. This can be accomplished by having the
virus copies make the private keys they generate avail-
able to the the author by encrypting them using the
authors public key and publishing these encryptions.
This makes sure that at worst we activate the attacks
above that require the writer's involvement.

We will now explore some of the subtleties involved
in implementing a secret sharing (or key splitting)
virus. Consider an ancestry of secret sharing viruses
that make use of one public/private key pair. A virus
that resides on node i cannot decrypt D0 to getD with-
out exposing the entire private key to the user of node
i. It follows that the user of node i would know the
private key from then on. In order to securely deny ac-
cess to future data, the viruses must therefore be able
to generate other public/private key pairs. This is not
an easy problem, since the viruses cannot start with
the private key and then split it up. This problem is
similar to a traditional problem in secret sharing. How
can a group of people share a secret such that no one
knows the secret until it is reconstructed? This im-
plies that an arbitrator cannot be used to divide up
the secret. Ingemarsson and Simmons demonstrated a
protocol that accomplishes this [IS91]. Frankel demon-
strated a way to do this using a scheme similar to El-
Gamal [Fra90]. Both of these protocols are for appli-
cations in which a secret is shared statically, i.e. it is
split up only once. Our secret sharing virus splits up a
secret with each generation. Since the virus replicates
exponentially, a dynamic tree-like structure is used to
generate keys used in denial of service attacks. Our
virus is based on the ElGamal cryptosystem [ElG85].

We will now explain how the secret sharing virus
operates. Consider m viruses on m nodes that want
to generate a public/private key pair (m > 1). All
the viruses share the same g and p, such that g is a
generator modulo p, where p is a large prime. Each
virus generates a random value, denoted by xi, such
that xi is less than p. The virus on node i then cal-
culates yi, using yi = gxi mod p. The viruses then
publish their yi's anonymously over a public channel
(and perhaps they also publish the encryption under
the writer's key of their private choices { if we choose
this option). Upon reading the values from the chan-
nel, each virus computes y =

Q
m

i=1
yi (mod p). Every

virus therefore has the public key y, g, and p. The
private key x can only be found by obtaining all of the
xi's and computing, x =

P
m

i=1
xi (mod p � 1). Fur-

thermore, since each node i can only access xi, none

of the users can calculate x without collaborating with
the (m�1) other users. For availability purposes a key
may be kept at a number of places (and by the writer if
we so choose). The network of m viruses therefore has
the ability to generate an arbitrary number of pub-
lic/private key pairs, such that the private keys are
shared secretly. To free all m nodes each virus must
publish its xi so that the private key can be calculated
by each virus (this is what is shown in [Fra90]).

A dynamic distributed virus: Consider the case
in which a set of viruses are spreading on a network.
Let N be the set of nodes on the net, with jN j = n.
Assume that some users trust others and some don't.
Also assume that N can be partitioned into users who
maintain backups and users who don't. Initially, m
nodes are infected with the secret sharing virus. Each
virus is programmed to infect exactly two other nodes.
In a given round, the viruses generate and publish their
yi's anonymously through a public channel (e.g., a bul-
letin board). Each virus then computes y and produces
children. Each of the children is told whether it is an
L child or an R child, where L and R denote left and
right, respectively. The children of node p are sent
to nodes randomly chosen from the set N � fpg. A
cryptographic attack is then performed on each of the
original m nodes using the public key. The users are
then noti�ed of the presence of the viruses.

At this point each of the victims will need the other
m� 1 xi's in order to get the information back. Since
the viruses disclosed their yi's anonymously, each vic-
tim has no idea which of the (n�1) other nodes contain
the xi's that are needed. Perhaps some victims will try
to locate each other. Since some users are untrustwor-
thy, they might try to give bogus xi's. If two victims
are competitors or enemies they may not help each
other at all. Users with adequate backups will be able
to restore their own information, and may choose not
to publish their xi. Either way, chances are that not
everyone will get their information back every time.

Once resident, the L and R viral children gener-
ate new xi's and calculate the corresponding new yi's.
The L children then take it upon themselves to de-
cide whether or not to repair the damage caused to
the original m nodes. The R children were not given
the original xi's by their parents. Each of the L chil-
dren ips a coin. This toss is then used to determine
whether or not to publish the old xi. In any case, all
of the new yi's are published. If allm of the L children
decide to post the old xi's, then the m original victims
will be able to get their information back. Otherwise,
either a subset of them or none of them will be given
the xi's necessary to repair the damage. Both the L
and R children then calculate their own public keys,
and another round commences.
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If after a su�cient number of generations, one of
the users manages to catch a virus before it infects,
it will be at that users discretion to help the previous
victims. If m of the victims of a given viral generation
get involved in the protocol, then they will have to
collaborate to reverse the damage. The secret sharing
virus is made possible because each subsequent viral
generation decides whether or not to free the previous
generation, and because the private key only appears
at a given node when the key is needed. The virus
permits four possible outcomes for each node of the
network:

1. The node is never inhabited by the virus

2. The node gets infected, but recovers after a certain
length of time

3. The node gets infected and never recovers

4. The node contains the virus but su�ers no damage
since backups exist

Remark: A bene�cial use of our ideas is organizing
the storage of keys so that they are shared but users do
not get direct access to them. By exploiting the tree
structure it is possible to propagate the keys and split
them into two pieces each time. The internal nodes
forget their keys but remember the pointers. This as-
sures a careful storage of sensitive keys that is not eas-
ily traceable. It can be done with ElGamal public keys
in the method that we have described above.

6 Suggested Countermeasures

There are several measures that can be taken to sig-
ni�cantly reduce the risk of being infected by a cryp-
tovirus, and there are also measures that can insure
a quick recovery in the event of an attack. Fortu-
nately, many of the attacks described in this paper can
be avoided using existing antiviral mechanisms, since
cryptoviruses propagate in the same way as traditional
viruses. The �rst step in this direction is implement-
ing mechanisms to detect viruses prior to or imme-
diately following system in�ltration. One of the pio-
neering works in the area was \An Intrusion-Detection
Model", by Dorothy Denning [Den86]. The paper by
White, Chess, and Kuo entitled \Coping with Com-
puter Viruses and Related Problems" is another good
source regarding the virus threat [WCK89].
Access control to cryptographic tools: More
speci�cally, we suggest auditing access to crypto-
graphic tools - This is perhaps the major issue that
needs to be learned. This will help system administra-
tors identify suspicious cryptographic usage.

Note that if strong cryptographic ciphers and ran-
dom number generators are made available to user
processes, then they will also be made available to
cryptoviruses. Such viruses would be smaller than our
cryptovirus since they would not contain as much code,
and they would also run faster since such tools are usu-
ally optimized for speed. Incorporating strong crypto-
graphic tools into the operating system services layer
may seem like it would increase system security, but
in fact, it may signi�cantly lower the security of the
system if the system is vulnerable to infection. Fur-
thermore, with such tools readily available, virus writ-
ers would not even have to understand cryptography
to create cryptoviruses. Note that this rule should not
apply only to export control (as it is now) but also to
protection of an installation by its own administration.
On-line proactive anti-viral measures: A gen-
eral suggestion for an on-line network-wide method
for �ghting viruses is in \How To Withstand Mobile
Virus Attacks" by Ostrovsky and Yung [OY91]. This
paper describes a mechanism whereby a network of
processors can cope with network viruses. It is shown
how local computations (at each processor), and global
computations can be made robust using a constant
factor resilience and a polynomial factor redundancy
in computation. This defense mechanism is of par-
ticular relevance to cryptovirological attacks because
it allows computations to proceed in the presence of
cryptoviruses, and also allows automatic recovery of
user data. While the original suggestion is theoretic
in nature, a more practical adaptation of this mech-
anism was suggested in Spirakis et. al. and is called
\securenet" [SKG94]. This approach can also be ap-
proximated by conducting frequent backups and by
employing highly responsive and active anti-viral tools
that execute perpetually.

7 Conclusion

We have shown how Cryptography can be used to im-
plement viruses that are able to mount extortion-based
attacks on their hosts. Public-key cryptography is es-
sential in enabling the writer to get an advantage over
the victim. We also presented an experimental cryp-
tovirus that accomplishes this (it demonstrates cryp-
tographic implementations requiring small space). A
model based on a distributed network was then formu-
lated and an algorithm was provided for how to write
a virus that is able to gain discretionary access con-
trol over its host. We also suggested a set of measures
that can be taken to minimize the possibility of and
the risks posed by the cryptovirological attacks.
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A Implementation and Perfor-

mance of the Cryptovirus

Precomputation: Two precomputations were per-
formed to create the cryptovirus. The only other form
of virus that we are aware of that requires precom-
putation are those that decompress themselves dur-
ing runtime. Such viruses save on disk space and are
therefore less noticeable. The �rst precompuatation we
performed was the generation of a public/private key
pair. The key modulus used was 512 bits-long. Once
a pair was found, the values for p and q were then
tested further to ensure primality. We used the GNU
MP function mpz probab prime p() with 300 repeti-
tions for testing both p and q. This MP function is an
implementation of the primality test in Knuth [Knu69],
where it is indicated that 25 repetitions are su�cient.
Space e�cient arithmetic implementation:

The second precomputation was calculating the recip-
rocal of the RSA modulus. The virus is equipped with
an RSA exponent, modulus, and reciprocal of the mod-
ulus. Though the inclusion of the reciprocal is not
necessary, it signi�cantly reduced the size of the MP
library code in the virus. Since the virus already knows
the reciprocal of the modulus, it need not invoke a divi-
sion routine during RSA encryption. The GNU source
�les mpn div.c and mpn lshift.c were not needed in the
cryptovirus as a result of this optimization. The com-
piled object �les of both of these source �les comprised
3,808 bytes (which were saved).
The algorithm: A special algorithm is used to per-

form the modulo operation during RSA encryption.
This method is a modi�cation of the division algorithm
based on repeated subtraction. We want to compute
ab mod c, without using any divisions. We are given inv
and inv exp, which form the reciprocal of the modulus
n as de�ned in Aho, Hopcroft, and Ullman [AHU74].
The signi�cant bits are represented by inv, and inv exp
is the exponent used to indicate the location of the dec-
imal point. Furthermore, we are given that b is 3 (since
we only employ one key we are not exposed to weak-
nesses of small-exponents when the same message is
encrypted by various ciphers [Has90].) We �rst square
a, to get a number x. We then multiply x by inv, and
adjust the result using inv exp. Call this new number

t. If x minus t is greater than or equal to c, then we
subtract c from x. We then check if x is greater than
or equal to c, and subtract c from x if it is, etc. This
process is continued until x is less than c. The result of
the modulo operation is x [Has]. We then multiply x
by a and the same modulo operation is repeated again.
The resulting value is a3 mod c.

Spread prevention: The cryptovirus was designed
to only propagate on MC68030 Macintoshes with ROM
version 120. This includes the Mac SE/30, Mac //cx,
etc. The virus could very easily be modi�ed to in-
fect any Macintosh with the MC68020 processor and
higher. The virus was tested with system 7.1 and
was developed in two separate parts. It consists of
an attacking routine which contains the modi�ed MP
library, and a viral routine. Upon completion, the at-
tacking routine was appended to the end of the virus,
forming a cryptovirus. The viral routine was written
completely in Motorola 68000 assembly language. The
virus is programmed to attack on August 13, 1995.
It also has a time limit after which it no longer infects
systems. Our cryptovirus does not bypass heuristic an-
tiviral programs or activity monitors. Its sole purpose
is to demonstrate the information extortion attack.

Virus operation: The virus is similar to TSR
viruses found on IBM PC compatible computers. It
exists in one of three states at any given time: in a
program, in the system �le, or in a patch to an op-
erating system routine. When an infected program is
run, the virus gets control before the host program and
checks to see if the system �le is already infected. If it
is not infected, the system �le gets infected. Control
is then sent to the host by the virus. Once the system
is rebooted, the virus in the system copies itself into
RAM and modi�es the trap dispatch table so that the
table invokes the resident copy of the virus whenever
a program is run. The next time a program is run, the
virus that resides in the patch will see if the program
is already infected with the cryptovirus. If it is not
infected, the virus will attempt to infect it.

If the machine is rebooted on August 13, 1995, the
virus in the system �le will perform a hybrid crypto-
graphic attack. The virus �rst generates 384 random
bits using its built in random generator. This gen-
erator is based on truerand.c by D. P. Mitchell, and
M. Blaze from AT&T [LMS]. These bits form the ini-
tialization vector and two TEA keys. The virus then
computes a cryptographic checksum of the �le enti-
tled `payroll' in the System Folder, provided the �le
is present. The checksum is performed using TEA in
CFB mode [Den82]. The MP library is then invoked
and the plaintext is encrypted using RSA. The virus
then attempts to encrypt a �le entitled `e-money' in the
System Folder using triple TEA in ECB mode. The

11



triple encryption is performed using the �rst TEA key,
followed by the second TEA key, followed by the �rst
again. This operation overwrites the original �le. The
virus then overwrites the RSA plaintext key in RAM,
and creates a �le entitled `VIRUS DAMAGE' in the
system folder. This �le contains the RSA ciphertext
and information on how to contact the virus author.
truerand physicalRNG: truerand produces phys-

ically random numbers. It operates by setting an alarm
and then incrementing a counter register rapidly in the
CPU until the alarm signal occurs. The contents of the
register is then XORed with the contents of an output
bu�er byte. After each byte of the output bu�er is
�lled, the bu�er is further processed by doing a right
circular shift of each character by 2 bits. This moves
the most random bits into the most signi�cant posi-
tions. This process is repeated until a truly random
number is achieved. The values are physically ran-
dom since they are derived from the di�erence in pulses
generated by the CPU crystal and the timer interrupt
crystal. It thus seems infeasible for a victim to try to
calculate the random values derived by the virus after
an attack.

Performance:

First note that overall about 10 minutes worth of
CPU time was spent on the above precomputations.
The following is a summary of the performance of the
cryptovirus. The reason for giving an approximate
running time is that the value varies from program to
program. Factors such as pending disk I/O contribute
to the variation.

Table 1
Running Time

system boot (no attack) < 16.7 msec
infect a program � 1 sec
infect �le `System' � 4 sec
perform RSA encryption = 66.7 msec
generate 384 random bits = 6.4 sec
system boot (w/ attack) = 11.92 sec
TEA encr. rate (1 round) = 47k bytes/sec
TEA encr. rate (3 rounds) = 15.7k bytes/sec

The critical �le and desired �les used in this bench-
mark were each 30,000 bytes in length. Note that there
are no disk writes needed in the system boot phase of
the virus, but disk writes are needed to infect the sys-
tem �le and program �les. This is why the system
boot phase takes much less time. We were unable to
get the same random generation rate that [LMS] got
using truerand. We found that the Macintosh SE/30
can only generate 1 random bit per clock tick (1/60th
of a second), as opposed to 2 bits per tick. The random
number generation is the bottleneck in terms of CPU

time, taking up 53.7% of the attack time. It takes a
mere 4 ticks to encrypt the plaintext using RSA.

Table 2
Virus Size

code size bytes src language(s)

attack routines `main' 434 ANSI C
TEA encryption routine 88 Asm
truerand size 124 Asm
misc. attack code 804 ANSI C
global data 560 N/A
modi�ed GNU MP lib 4,372 ANSI C

entire attack routine 6,382 ANSI C/Asm
main virus routine 614 Asm

total virus size 6,996 ANSI C/Asm

It can be inferred from table 2 that the attacking
routine could be made smaller if the entire routine were
written in assembly language. One of the outcomes of
our research was that we found that it is possible to
write code for RSA, truerand, and TEA, such that the
code does not exceed 7k bytes. Optimizing the code for
size was a major challenge since most viruses are very
small in size. The only limitations that were placed on
our code is that it contains a public key with a small
exponent built into it, along with the inverse of the
composite modulus. These optimizations allowed us
to omit a multiprecision exponentiation routine and a
division routine. This may have applications in other
areas such as smart card technology.
For space comparison, note that we used a modi�ed

GNU MP library which comprised only 4,372 bytes.
The size of the object code for the GNU library that
is required for full RSA encryption and decryption for
the Macintosh is 14,818 bytes. Note that this object
code corresponds to source �les that are entirely in
ANSI C. Our virus has in-line assembly, miscellaneous
optimizations, no exponentiation code, and no division
code. This is what accounts for the big di�erence in
size. The value of 14,818 does not include the C stan-
dard library code (which is about 27k itself).

12

View publication statsView publication stats

https://www.researchgate.net/publication/2301959

